

Corrigé : exercices sur les fonctions

Niveau 1

Exercice 1:

- **1a.** L'image de -4 par f : f(-4) = -2; L'image de 6 par f : f(6) = 4.5.
 - **b.** f(5) = 4 et f(0) = 3.
 - c. Les antécédents de 2 par f sont : -5 ; -1 ; 2 et 4.
 - d. Les antécédents de -2 par f sont : -4 et -2.
- 2. Le nombre 4 n'a pas d'antécédent par f : aucun point n'a pour ordonnée 4!
- 3. Tout nombre strictement inférieur à -3 ou strictement supérieur à 4,5 n'a aucun antécédent par f.
- 4. –3 et tout nombre compris entre 4 (exclu) et 4,5 ($4 < x \le 4,5$) admet un seul antécédent par f.

Exercice 2:

- 1) L'image de -3 par g est 3.
- 2) Un antécédent de 4 par g est 1 (ou 3).
- 3) -2 a pour image 2 par g.
- 4) -3 a pour antécédent 0 par g.
- 5) 0 et 2 ont la même image par g. (ou 1 et 3)
- 6) g(-4)=4 g(4)=0

Exercice 3:

- 1. $h(4) = 3 \times 4 7 = 12 7 = 5$; L'image de 4 par h est 5. $h(-1) = 3 \times (-1) 7 = -3 7 = -10$; L'image de -1 par h est -10.
- **2.** $h(0) = 3 \times 0 7 = 0 7 = -7$ donc h(0) = -7;

$$h\left(\frac{2}{3}\right) = 3 \times \frac{2}{3} - 7 = 2 - 7 = -5;$$
 donc $h\left(\frac{2}{3}\right) = -5.$

3.
$$h(x) = -7$$

$$3x - 7 = -7$$

$$3x = -7 + 7$$

$$3x = 0$$

$$\mathbf{x} = \mathbf{0}$$

4. h(x) = 2

$$3x - 7 = 2$$

$$3x = 2 + 7$$

$$3x = 9$$

$$x = 3$$

0 est l'antécédent de -7 par h.

3 est le seul nombre ayant 2 pour image par h.

Corrigé: exercices sur les fonctions

Niveau 2

Exercice 1:

(les résultats sont donnés avec la précision permise par le graphique)

- 1) l'image de 3 par la fonction f est 2
 l'image de 4 par la fonction f est 1
 un antécédent de 1 par la fonction f est 4 (ou 5,4 ou 1,8 ou 0,4)
 un antécédent de 2 par la fonction f est 1 (ou 5,5)
- 2) Compléter les égalités : f(-3) = -2 ; f(0) = 0 ; f(-3) = -2 ou f(0,5) = -2 ou f(2,5) = -2 ou f(5,8) = -2
- 3) A l'aide du graphique, compléter le tableau de valeurs de la fonction f :

Ī	X	- 4	- 3	- 1	0	1,5	4	6
	f(x)	- 1,5	- 2	2	0	- 3	1	- 4

Exercice 2:

Soit f la fonction définie par $f(x) = x^2 - 3$ pour tout nombre x.

- 1) L'image de 0 est $-3 \operatorname{car} 0^2 3 = -3$.
 - L'image de 3 est 6 car $3^2 3 = 6$.
 - L'image de 1 est 2 car $(-1)^2 3 = -2$.
 - L'image de $\frac{3}{2}$ est $-\frac{3}{4}$ car $(\frac{3}{2})^2 3 = -\frac{3}{4}$.
 - L'image de $\sqrt{3}$ est 0 car $(\sqrt{3})^2 3 = 3 3 = 0$
- 2) L'antécédent de 3 par f est 0

$$car x^2 - 3 = -3$$

$$x^2 = 0$$

$$x = 0$$

3) Les antécédents de 6 par f sont 3 et -3

$$car x^2 - 3 = 6$$

$$x^2 = 9$$

$$x = 3 \text{ ou} - 3$$

Exercice 3:

$$1.5 \rightarrow 5 \times 6 = 30 \rightarrow 30 + 5^2 = 55 \rightarrow 55 + 9 = 64.$$

$$2. -2 \rightarrow -2 \times 6 = -12 \rightarrow -12 + (-2)^2 = -12 + 4 = -8 \rightarrow -8 + 9 = 1$$
; Pour -2, on obtient 1.

3.
$$x \rightarrow 6x \rightarrow 6x + x^2 \rightarrow 6x + x^2 + 9$$
 Pour x, on obtient $x^2 + 6x + 9$.

4.
$$6x + x^2 + 9 = 2 \times x \times 3 + x^2 + 3^2 = (x + 3)^2$$

5.
$$(x + 3)^2 = 0$$
 est une équation produit nul donc
$$x + 3 = 0$$

$$x + 3 = 0$$

$$x = -3$$

La solution de l'équation est -3.

Exercice 4:

1. Aire WEST =
$$(2x+4)(8x-3) = 16x^2 - 6x + 32x - 12 = 16x^2 + 26x - 12$$

2. Aire NORD =
$$(4x+2)^2 = 16x^2 + 16x + 4$$
.

3.
$$16x^2 + 26x - 12 = 16x^2 + 16x + 4$$

$$26x - 12 = 16x + 4$$

$$10x = 16$$

$$x = 1,6$$
.

Quand x = 1,6 cm les deux quadrilatères ont la même aire.

Corrigé: exercices sur les fonctions

Exercice 1:

 Choisir un nombre 	X
• lui ajouter 4	x+4
• Multiplier la somme obtenue par le nombre choisi	$(x+4)\times x$
 Ajouter 4 à ce produit 	$(x+4)\times x+4$
Ecrire le résultat	on développe : x^2+4x+4 on reconnaît une identité
	remarquable
	$(x+2)^2$

Quel type de nombre retourne ce programme?

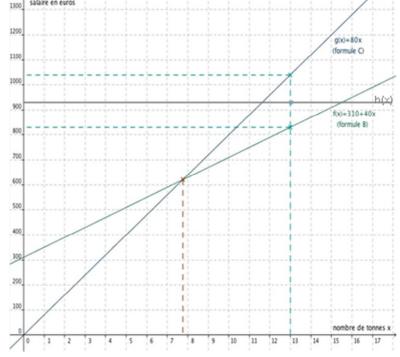
Ce programme retourne un nombre positif car il permet d'ajouter 2 au nombre initialement choisi et d'élever le résultat obtenu au carré.

Exercice 2:

1.

Nombre de tonnes de pêches cueillies dans un mois	5	11	15
Salaire mensuel en euros avec la formule A	930	930	930
Salaire mensuel en euros avec la formule B	510	750	910
Salaire mensuel en euros avec la formule C	400	880	1200

- 2. Soit x la quantité de pêches cueillies en un mois, en tonnes.
 - Avec la formule A, le salaire sera de 930 euros (il ne dépend pas de x).
 - \triangleright Avec la formule B, le salaire sera 340 + 40x euros.
 - Avec la formule C, le salaire sera 80x euros.


3.

- 4. a) On lit graphiquement que le salaire est le même pour les formules B et C pour une cueillette d'environ 7,8 tonnes (abscisse du point d'intersection des deux droites).
- 4. b) On résout l'équation f(x) = g(x). 310 + 40x = 80x

$$40x = 310$$
$$x = \frac{310}{40}$$
$$x = 7.75$$

Le salaire sera le même si on cueille 7,75 tonnes exactement.

5. Pour une cueillette de 13 tonnes dans le mois, la formule la plus avantageuse est la formule C
: on lit graphiquement que le salaire perçu est alors d'environ 1040 euros.

